Logic-based Benders decomposition for planning and scheduling: a computational analysis

نویسندگان

  • André Augusto Ciré
  • Elvin Coban
  • John N. Hooker
چکیده

Logic-based Benders decomposition (LBBD) has improved the state of the art for solving a variety of planning and scheduling problems, in part by combining the complementary strengths of constraint programming (CP) and mixed integer programming (MIP). We undertake a computational analysis of specific factors that contribute to the success of LBBD, to provide guidance for future implementations. We study a problem class that assign tasks to multiple resources and poses a cumulative scheduling problem on each resource. We find that LBBD is at least 1000 times faster than state-ofthe-art MIP on larger instances, despite recent advances in the latter. Further, we conclude that LBBD is most effective when the planning and scheduling aspects of the problem are roughly balanced in difficulty. The most effective device for improving LBBD is the inclusion of a subproblem relaxation in the master problem. The strengthening of Benders cuts also plays an important role when the master and subproblem complexity are properly balanced. These findings suggest future research directions. This paper is partially based on results presented by the same authors at CPAIOR 2013.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed Integer Programming vs. Logic-Based Benders Decomposition for Planning and Scheduling

A recent paper by Heinz and Beck (CPAIOR 2012) found that mixed integer software has become competitive with or superior to logic-based Benders decomposition for the solution of facility assignment and scheduling problems. Their implementation of Benders differs, however, from that described in the literature they cite and therefore results in much slower performance than previously reported. W...

متن کامل

A Hybrid Method for Planning and Scheduling

We combine mixed integer linear programming (MILP) and constraint programming (CP) to solve planning and scheduling problems. Tasks are allocated to facilities using MILP and scheduled using CP, and the two are linked via logic-based Benders decomposition. Tasks assigned to a facility may run in parallel subject to resource constraints (cumulative scheduling). We solve minimum cost problems, as...

متن کامل

Benders’ decomposition algorithm to solve bi-level bi-objective scheduling of aircrafts and gate assignment under uncertainty

Management and scheduling of flights and assignment of gates to aircraft play a significant role to improve the performance of the airport, due to the growing number of flights and decreasing the flight times. This research addresses the assignement and scheduling problem of runways and gates simultaneously. Moreover, this research is the first study that considers the constraint of unavailabil...

متن کامل

Planning and Scheduling by Logic-Based Benders Decomposition

We combine mixed integer linear programming (MILP) and constraint programming (CP) to solve an important class of planning and scheduling problems. Tasks are allocated to facilities using MILP and scheduled using CP, and the two are linked via logic-based Benders decomposition. Tasks assigned to a facility may run in parallel subject to resource constraints (cumulative scheduling). We solve pro...

متن کامل

Single-facility scheduling by logic-based Benders decomposition

Logic-based Benders decomposition can combine mixed integer programming and constraint programming to solve planning and scheduling problems much faster than either method alone. We find that a similar technique can be beneficial for solving pure scheduling problems as the problem size scales up. We solve single-facility non-preemptive scheduling problems with time windows and long time horizon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Knowledge Eng. Review

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2016